

Mark Scheme (Results)

Summer 2013

GCE Statistics 3 (6691/01)

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <a href="https://www.edexcel.com">www.edexcel.com</a>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

Summer 2013
Publications Code UA037011
All the material in this publication is copyright
© Pearson Education Ltd 2013

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

## **EDEXCEL GCE MATHEMATICS**

## General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{\text{ will be used for correct ft}}$
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
  - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
  - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

| Question<br>Number                                                                                                                           | Scheme                                                                                                                                                                                                                    |                            |                                                                            |                                                   |                            |                       |           | ks      |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------|---------------------------------------------------|----------------------------|-----------------------|-----------|---------|--|--|--|
|                                                                                                                                              | C                                                                                                                                                                                                                         | holesterol Leve            | el High                                                                    | Low                                               |                            |                       |           |         |  |  |  |
| 1                                                                                                                                            | High                                                                                                                                                                                                                      |                            | 7.6                                                                        | 12.4                                              | 20                         | ]                     | M1 A      | . 1     |  |  |  |
| 1.                                                                                                                                           | Low                                                                                                                                                                                                                       |                            | 30.4                                                                       | 49.6                                              | 80                         |                       | M1A       | 11      |  |  |  |
|                                                                                                                                              |                                                                                                                                                                                                                           |                            | 38                                                                         | 62                                                | 100                        | <u></u>               |           |         |  |  |  |
|                                                                                                                                              |                                                                                                                                                                                                                           |                            |                                                                            |                                                   |                            |                       |           | (2)     |  |  |  |
|                                                                                                                                              | $H_0$ : Cho                                                                                                                                                                                                               | olesterol level is in      | ndependent of intak                                                        | e of saturated f                                  | ats(no associa             | tion)                 | B1        |         |  |  |  |
|                                                                                                                                              | H <sub>1</sub> : Cholesterol level is not independent of intake of saturated fats (association)                                                                                                                           |                            |                                                                            |                                                   |                            |                       |           |         |  |  |  |
|                                                                                                                                              |                                                                                                                                                                                                                           |                            |                                                                            |                                                   |                            |                       |           |         |  |  |  |
|                                                                                                                                              | $\parallel_{o}\mid$                                                                                                                                                                                                       | E                          | $\frac{(O-E)^2}{E}$                                                        | $(O-E)^2$                                         |                            |                       |           |         |  |  |  |
|                                                                                                                                              |                                                                                                                                                                                                                           | E                          | E                                                                          |                                                   | $\frac{O^2}{E}$            |                       |           |         |  |  |  |
|                                                                                                                                              | 12                                                                                                                                                                                                                        | 7.6                        | 2.547 or $\frac{242}{95}$                                                  | 18.947                                            | or $\frac{360}{19}$        |                       | dM1       |         |  |  |  |
|                                                                                                                                              | 8                                                                                                                                                                                                                         | 12.4                       | 1.56129 or $\frac{242}{155}$                                               |                                                   | or $\frac{160}{31}$        |                       | A1        |         |  |  |  |
|                                                                                                                                              | 26                                                                                                                                                                                                                        | 30.4                       | $0.6368$ or $\frac{121}{190}$                                              |                                                   | $or \frac{845}{38}$        |                       |           |         |  |  |  |
|                                                                                                                                              | 54                                                                                                                                                                                                                        | 49.6                       |                                                                            |                                                   |                            |                       |           |         |  |  |  |
|                                                                                                                                              | $\sum \frac{(O-C)}{C}$                                                                                                                                                                                                    | $\frac{E)^2}{E}$ =5.135823 | 0.3903 or $\frac{121}{310}$<br>4 or $\frac{1.2^2}{7.6} + \frac{8^2}{12.4}$ | $\frac{1}{1+\frac{26^2}{20.4}+\frac{54^2}{40.4}}$ | $\frac{32}{6} - 100 = 5.1$ | 4 (awrt <b>5.14</b> ) | A1        | (3)     |  |  |  |
|                                                                                                                                              |                                                                                                                                                                                                                           | (2)(2-1)=1                 | 7.0 12.4                                                                   | 1 30.4 49.                                        | 0                          |                       | B1        |         |  |  |  |
|                                                                                                                                              |                                                                                                                                                                                                                           |                            |                                                                            |                                                   |                            |                       | B1        | (2)     |  |  |  |
|                                                                                                                                              | $\chi_1^2(0.05) = 3.841$<br>5.14 > 3.841 so sufficient evidence to reject H <sub>0</sub> [Condone "accept H <sub>1</sub> "]                                                                                               |                            |                                                                            |                                                   |                            |                       |           |         |  |  |  |
|                                                                                                                                              | Association between cholesterol level and saturated fat intake                                                                                                                                                            |                            |                                                                            |                                                   |                            |                       |           |         |  |  |  |
|                                                                                                                                              | Association between cholesterol level and saturated fat intake  Notes                                                                                                                                                     |                            |                                                                            |                                                   |                            |                       |           |         |  |  |  |
|                                                                                                                                              |                                                                                                                                                                                                                           |                            |                                                                            |                                                   |                            |                       |           |         |  |  |  |
|                                                                                                                                              | <b>Minimum working</b> use part marks: $E_i$ (2), Hyp (1), 5.14 (3), 3.841 (2), Conclusion (2)                                                                                                                            |                            |                                                                            |                                                   |                            |                       |           |         |  |  |  |
|                                                                                                                                              | 1 <sup>st</sup> M1 for some use of $\frac{\text{Row Total} \times \text{Col.Total}}{\text{Grand Total}}$ . May be implied by correct $E_i$                                                                                |                            |                                                                            |                                                   |                            |                       |           |         |  |  |  |
|                                                                                                                                              | $1^{st}$ A1 for all expected frequencies correct. Allow M1A0 for $E_i$ rounded to integers                                                                                                                                |                            |                                                                            |                                                   |                            |                       |           |         |  |  |  |
| 1 <sup>st</sup> B1 for both hypotheses. Must mention "cholesterol" and "fats" a Use of "relationship" or "correlation" or "connection" is B0 |                                                                                                                                                                                                                           |                            |                                                                            |                                                   |                            |                       | nce       |         |  |  |  |
|                                                                                                                                              | $2^{nd} dM1$                                                                                                                                                                                                              |                            | correct terms (as in                                                       |                                                   |                            |                       | ith their | $E_{i}$ |  |  |  |
|                                                                                                                                              | Dependent on 1 <sup>st</sup> M1 Accept 2sf accuracy for the M mark  2 <sup>nd</sup> A1 for all correct terms. May be implied by a correct ans.(2 dp or better)  Allow truncation eg 2.54 3 <sup>rd</sup> A1 for awrt 5.14 |                            |                                                                            |                                                   |                            |                       |           |         |  |  |  |
|                                                                                                                                              | 2 <sup>nd</sup> B1 for correct degrees of freedom (may be implied by a cv of 3.841)                                                                                                                                       |                            |                                                                            |                                                   |                            |                       |           |         |  |  |  |
|                                                                                                                                              | 3 <sup>rd</sup> M1                                                                                                                                                                                                        |                            | atement linking their                                                      |                                                   |                            |                       |           | 3.5)    |  |  |  |
|                                                                                                                                              | 4 <sup>th</sup> A1                                                                                                                                                                                                        | for a correct              | comment in context<br>ationship" or "con                                   | xt - must men                                     | tion "choles               | torol" and "fa        |           |         |  |  |  |
|                                                                                                                                              |                                                                                                                                                                                                                           | e.g. "There is             | s evidence of a rela<br>ough. If e.g hypoth                                | ationship bety                                    | ween cholest               | erol level and        |           | ake"    |  |  |  |

| Question<br>Number |                                                                                                                               |                      |          | ,        | Scheme            |                     |               |            |                  |                       | Marks                   |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|----------|-------------------|---------------------|---------------|------------|------------------|-----------------------|-------------------------|
| 2(a)               | Uni                                                                                                                           | $\boldsymbol{A}$     | В        | С        | D                 | E                   | F             | G          |                  |                       |                         |
|                    | Staff-Stu                                                                                                                     | 2                    | 4        | 3        | 5                 | 7                   | 1             | 6          |                  |                       |                         |
|                    | Satisfaction                                                                                                                  | 3                    | 2        | 6        | 4                 | 5                   | 1             | 7          |                  |                       | M1A1A1                  |
|                    | $ \begin{array}{c c} & [d] \\ \hline & d^2 \end{array} $                                                                      | -1                   | 2        | -3       | 1                 | 2                   | 0             | -1         |                  |                       |                         |
|                    | $d^2$                                                                                                                         | 1                    | 4        | 9        | 1                 | 4                   | 0             | 1          | 20               |                       |                         |
|                    | $r_s = 1 - \frac{6 \times 20}{7(49 - 1)}$                                                                                     | $\frac{0}{1)} = 0.6$ | 42857    |          | ( accep           | ot $\frac{9}{14}$ ) |               | (8         | awrt <b>0.</b> 0 | 643)                  | dM1A1                   |
| <b>(b)</b>         | $H_0: \rho = 0$                                                                                                               |                      |          |          |                   |                     |               |            |                  |                       | (5)                     |
| , ,                | $H_{1:} \rho \neq 0 (\rho >$                                                                                                  | 0)                   |          |          |                   |                     |               |            |                  |                       | B1                      |
|                    | Critical value i                                                                                                              |                      |          |          |                   |                     | ed test)      |            |                  |                       | B1                      |
|                    | 0.643 < cv so in                                                                                                              |                      |          |          | •                 |                     | 10) 00rr      | alation    | hataya           | on                    |                         |
|                    | There is insuff staff-student ra                                                                                              |                      |          |          | ggest a           | (positi)            | ve) com       | Ciation    | Detwe            | CII                   | B1ft                    |
|                    |                                                                                                                               |                      |          |          |                   |                     |               |            |                  |                       | (3)                     |
|                    |                                                                                                                               |                      |          |          | Notes             |                     |               |            |                  |                       | Total 8                 |
| (a)                | 1 <sup>st</sup> M1 for                                                                                                        | an atter             | npt to   |          |                   | students            | s ratio       | or satis   | faction          | ( at lea              | st 4 correct)           |
|                    | $1^{st} A1$ for                                                                                                               | correct              | rankin   | gs for l | both (or          | ne or bo            | oth may       | be rev     | ersed)           |                       |                         |
|                    | $2^{\text{nd}} \text{ A1}$ for $\sum d^2 = 20$ or correct $d^2 \text{ row (NB } \sum d^2 = 92$ for one set of reversed ranks) |                      |          |          |                   |                     |               |            |                  |                       |                         |
|                    | $2^{\text{nd}}$ dM1 for use of the correct formula, follow through their $\sum d^2$ (Dependent on 1 <sup>st</sup> M1)         |                      |          |          |                   |                     |               |            |                  |                       |                         |
|                    | If answer is not correct, a correct expression is required.                                                                   |                      |          |          |                   |                     |               |            |                  |                       |                         |
|                    | $3^{rd}$ A1 If $\sum$                                                                                                         | $\int d^2 = 2$       | 0 for a  | wrt 0.6  | 543 <u>or</u> i   | $\int d^2$          | =92 for       | r awrt -   | - 0.643          | (accep                | ot $\pm \frac{9}{14}$ ) |
| <b>(b)</b>         | 1 <sup>st</sup> B1 for b                                                                                                      | oth hype             | otheses  | in term  | s of <i>o</i> . o | one tail            | H. must       | t be con   | npatible         | with th               | eir ranking             |
|                    |                                                                                                                               |                      |          |          |                   |                     | lation"       |            |                  |                       | C                       |
|                    | 2 <sup>nd</sup> B1 for                                                                                                        | cv of 0.             | 7857     | or 0.71  | 143 for           | one-tai             | led test      | (accep     | t <u>+</u> )     |                       |                         |
|                    | The                                                                                                                           | ir cv m              | ust be   | compat   | ible wi           | th their            | $H_1$ wh      | ich ma     | y be in          | words                 |                         |
|                    |                                                                                                                               | -                    |          |          |                   |                     |               |            |                  |                       | is possible.            |
|                    |                                                                                                                               |                      |          |          |                   |                     |               | nention    | "ratio'          | or "no                | of students             |
|                    | -                                                                                                                             | membe                |          |          |                   |                     | ı<br>orovidec | 1 it is la | vl <1)           |                       |                         |
|                    |                                                                                                                               |                      |          |          |                   |                     | a one-t       |            |                  |                       |                         |
|                    |                                                                                                                               | e of "as             |          |          | _                 | 101                 | 20110         |            |                  |                       |                         |
|                    | Independent of 1 <sup>st</sup> B1 so if $ r_s  >  cv $ must say there is sufficient evidence of(o.e.)                         |                      |          |          |                   |                     |               |            |                  |                       |                         |
|                    | and if $ r_s  <$                                                                                                              | cv  mu               | st say   | insuffic | cient ev          | idence              | of (d         | o.e.) re   | gardles          | s of the              | ir hypotheses           |
|                    |                                                                                                                               |                      |          |          | •                 |                     | ents sco      |            |                  |                       |                         |
|                    | (This m                                                                                                                       | ark is j             | ust test | ing into | erpretat          | ion of c            | compari       | son of     | their r          | $\frac{1}{s}$ and the | neir cv)                |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |  |  |  |  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|--|
| <b>3(a)i</b> e.g   | Quota Sampling: Advantages: Fieldwork can be done quickly, or administering the test is easy, or costs are kept to a minimum (cheap), or gives estimates for each course. or OK for large populations or sampling frame not required (o.e.) Disadvantages: Non-random process or not possible to estimate the sampling                                                                                                                                                                                                       |                    |  |  |  |  |  |
| e.g                | errors, <u>or</u> non response not recorded, <u>or</u> interviewer can introduce <b>bias</b> in sample choice. (o.e.)                                                                                                                                                                                                                                                                                                                                                                                                        | B1                 |  |  |  |  |  |
| 3(a)ii             | Stratified Sampling: Advantages: Can give accurate estimates as it is a random process, or gives                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |  |  |  |  |  |
| e.g.               | estimates for each course <u>or</u> <b>representative</b> of [BUT not "proportional" to] the whole population. (o.e.)                                                                                                                                                                                                                                                                                                                                                                                                        |                    |  |  |  |  |  |
| e.g.               | Disadvantages: Sampling frame required, <u>or</u> strata may not be clear as some students overlap courses <u>or</u> not suitable for large populations. (o.e.)                                                                                                                                                                                                                                                                                                                                                              | B1 (2)             |  |  |  |  |  |
| <b>3</b> (b)       | Total enrolments=1000 (may be implied by calculations)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B1                 |  |  |  |  |  |
|                    | Leisure and Sport= $\frac{420}{1000} \times 100 = 42$                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1                 |  |  |  |  |  |
|                    | Information Technology= $\frac{337}{1000} \times 100 = 33.7 = 34$ Health and Social Care= $\frac{200}{1000} \times 100 = 20$                                                                                                                                                                                                                                                                                                                                                                                                 |                    |  |  |  |  |  |
|                    | Media Studies= $\frac{43}{1000} \times 100 = 4.3 = 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A1                 |  |  |  |  |  |
| 3(c)               | The college's information system would be used to identify each student and which course they are enrolled on.                                                                                                                                                                                                                                                                                                                                                                                                               | (3)<br>B1          |  |  |  |  |  |
|                    | i.e. idea of <b>sampling frame</b> or <b>list</b> for <b>each course</b> .  Use of <b>random numbers</b> to select required number of students <b>from each course</b>                                                                                                                                                                                                                                                                                                                                                       | B1                 |  |  |  |  |  |
|                    | Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (2) <b>Total 7</b> |  |  |  |  |  |
|                    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |  |  |  |  |  |
| (a)                | Do not penalise for lack of context in part (a)  1 <sup>st</sup> B1 for an advantage and a disadvantage for quota sampling (must be 1 <sup>st</sup> or l  2 <sup>nd</sup> B1 for an advantage and a disadvantage for stratified sampling (2 <sup>nd</sup> or label  Do not allow opposite pairs e.g. "quicker/easier" for quota sampling and "takes a lon difficult" for stratified or quota "easy to use" but strat. "hard for large populations"  Do not allow same reason for both e.g. "gives estimates for each course" | lled (ii))         |  |  |  |  |  |
| (b)                | M1 for one correct calculation, ft their "1000" A1 for 42, 34, 20 and 4 only                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |  |  |  |  |  |
| (c)                | <ul> <li>1<sup>st</sup> B1 for some mention of a suitable <u>sampling frame</u>. Need not give the specific term but a suitable source of list is required for all students <u>in each course</u>.</li> <li>2<sup>nd</sup> B1 for mentioning use of <u>random numbers</u> or some random selection process <u>for each course</u>. If they are describing systematic sampling score B0 here</li> </ul>                                                                                                                       |                    |  |  |  |  |  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |                                         |                                                  |                                    |                  |  |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------|------------------------------------|------------------|--|--|
| 4 (a)              | $\overline{x} = \frac{8 \times 1.5 + 12 \times 4 + 13 \times 5.5 + 9 \times 7 + 8 \times 10}{50} = \frac{274.5}{50} = 5.49$ (*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         |                                         |                                                  |                                    |                  |  |  |
| 4 (a)              | $\overline{x} = 6 \times 10^{112 \times 112 \times$ |                                                                                         |                                         |                                                  |                                    |                  |  |  |
|                    | $8 \times 15^{2} + 12 \times 4^{2} + 13 \times 55^{2} + 9 \times 7^{2} + 8 \times 10^{2}$ 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                         |                                         |                                                  |                                    |                  |  |  |
|                    | $s^{2} = \frac{6 \times 1.5 + 12 \times 4 + 13 \times 3.5 + 7 \times 7 + 6 \times 10}{49} - \frac{30}{49} 5.49^{2}, = 6.88 $ (*) M1,A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                         |                                                  |                                    |                  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         |                                         |                                                  |                                    | (3)              |  |  |
| <b>(b)</b>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         |                                         |                                                  |                                    |                  |  |  |
|                    | $a = 12.81 \text{ (tables) } \underline{\text{or}} 12.68 \text{ (calc)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                         |                                         |                                                  |                                    |                  |  |  |
|                    | b = 50 - (28.85 + a) = 8.34 (tables) or 8.47 (calc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                         |                                                  |                                    |                  |  |  |
| (c)                | H <sub>0</sub> : Norma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $H_0$ : Normal distribution is a good fit $H_1$ : Normal distribution is not a good fit |                                         |                                                  |                                    |                  |  |  |
|                    | Class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                       | E                                       | Q <sup>2</sup>                                   | ()2                                | 1                |  |  |
|                    | Class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         | E                                       | $\frac{O^2}{E}$                                  | $\frac{\left(O-E\right)^2}{E}$     |                  |  |  |
|                    | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                       | 0.76                                    |                                                  |                                    | M1               |  |  |
|                    | 0-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                                                                                       | 8.56                                    | 7.4766                                           | 0.0366                             | -                |  |  |
|                    | 3-5<br>5-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12<br>13                                                                                | 12.73<br>7.56                           | 11.31186<br>22.354497                            | 0.0418<br>3.9144                   | A 1              |  |  |
|                    | 6-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9                                                                                       | 12.68 or (12.81)                        | (6.32) ~ 6.38801                                 | 1.0680~ (1.13)                     | A1               |  |  |
|                    | 8-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                                                                       | (8.34) or 8.47                          | 7.556080~ (7.67)                                 | $(0.013) \sim 0.0260$              | =                |  |  |
|                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                         |                                         |                                                  |                                    |                  |  |  |
|                    | $\int \frac{O^2}{E} - N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V = 5.08                                                                                | 7~ 5.1400                               | :                                                | awrt ( <b>5.09</b> ~ <b>5.14</b> ) | A1               |  |  |
|                    | v = 5 - 3 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |                                         | r 5 - 3 or 2 can be imp                          | lied by 5 991 seen)                | B1               |  |  |
|                    | $\chi^2_2(0.05) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                         | (10)                                    | 3 3 01 2 can be imp                              | ned by 3.771 seen)                 | B1               |  |  |
|                    | $\chi_2(0.05) = 3.991$<br>5.09<5.991 so insufficient evidence to reject H <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |                                         |                                                  |                                    |                  |  |  |
|                    | Normal distribution is a good fit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                         |                                         |                                                  |                                    |                  |  |  |
|                    | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                         |                                         |                                                  |                                    |                  |  |  |
|                    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                         |                                                  |                                    |                  |  |  |
| (a)                | B1cso for denominator of 50 and at least 3 products on num or 274.5 on num  1844.25 1507.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                         |                                         |                                                  |                                    |                  |  |  |
|                    | M1 for a correct expression with at least 3 correct products on num or $\frac{1844.25}{49} - \frac{1507.005}{49}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                         |                                         |                                                  |                                    |                  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         |                                         |                                                  |                                    |                  |  |  |
|                    | $\frac{\text{or}}{49} \frac{337.245}{\text{or}} \left( \frac{7377}{200} - 5.49^2 \right) \times \frac{50}{49} \text{ etc. Allow 3sf accuracy}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                         |                                         |                                                  |                                    |                  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         | ,                                       | no incorrect working s                           |                                    |                  |  |  |
|                    | 111000 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00 11                                                                                 | ini ivii scorea ana i                   | no meorreet working s                            | Con                                |                  |  |  |
| <b>(b)</b>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         |                                         | ne normal dist. Correct u                        |                                    |                  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         |                                         | or $b$ in range 8.34~ 8                          |                                    |                  |  |  |
|                    | 2 Alft fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | or 50 – 2                                                                               | 28.85 – their $a$ (or $b$ )             | (but requires M1). Allo                          | w awrt 3sf. Must add               | up to 50         |  |  |
| (c)                | 1 <sup>st</sup> B1 for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | both h                                                                                  | ypotheses. B0 if th                     | ey include 5.49 or 6.88                          | 8. Condone $X \sim N(\mu, \alpha)$ | $\sigma^2$ ) etc |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                       | _                                       | -                                                |                                    |                  |  |  |
|                    | 1 <sup>st</sup> M1 for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | attemp                                                                                  | ting $\frac{(O L)}{F}$ or $\frac{O}{A}$ | $\frac{O^2}{E}$ , at least 3 correct e           | xpressions or values               |                  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         |                                         | e <sup>rd</sup> or 4 <sup>th</sup> column. (2 dp |                                    |                  |  |  |
|                    | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | llow an                                                                                 | y value in the range                    | es for the last two rows                         | S.                                 |                  |  |  |
|                    | $2^{\text{nd}}$ A1 fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r a test                                                                                | statistic that is awrt                  | 5.09 ~ 5.14. Award M                             | M1A1A1 if this is ob               | tained.          |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         |                                         | d on their test statistic                        |                                    | > 3.8)           |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         |                                         | ore M0 e.g. "significan                          | · ·                                |                  |  |  |
|                    | 3 <sup>rd</sup> A1 fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | or a corre                                                                              | ect comment suggesti                    | ng that normal model is                          | suitable <u>or</u> manager's       | belief is        |  |  |
|                    | correct. No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1t.Cor                                                                                  | idone mention of 3.4                    | 9 or 6.88 here. Hypothes                         | ses wrong way round s              | cores AU         |  |  |

| Question<br>Number | Scheme                                                                                                                                                                           | Marks          |  |  |  |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|--|
| 5 (a)              | Let $L \sim N(50, 25)$ and $S \sim N(15, 9)$                                                                                                                                     |                |  |  |  |  |  |
|                    | Let $X = L - (S_1 + S_2 + S_3)$                                                                                                                                                  | B1             |  |  |  |  |  |
|                    | $E(X) = 50 - 3 \times 15 = 5$                                                                                                                                                    | B1             |  |  |  |  |  |
|                    | $Var(X) = 25 + 3 \times 9 = 52$                                                                                                                                                  | M1A1           |  |  |  |  |  |
|                    | $P(X < 0) = P\left(Z < \frac{-5}{\sqrt{52}}\right)$                                                                                                                              | dM1            |  |  |  |  |  |
|                    | =P(Z<-0.693)                                                                                                                                                                     |                |  |  |  |  |  |
|                    | =0.244 or 0.2451 (tables) (awrt $0.244 \sim 0.245$ )                                                                                                                             | A1 (6)         |  |  |  |  |  |
| <b>(b)</b>         | Let $Y = L - 3S$                                                                                                                                                                 | B1 (0)         |  |  |  |  |  |
| (~)                | $E(Y) = 50 - 3 \times 15 = 5$                                                                                                                                                    | B1             |  |  |  |  |  |
|                    | $Var(Y) = 25 + 3^2 \times 9 = 106$                                                                                                                                               | M1A1           |  |  |  |  |  |
|                    | ( _5 )                                                                                                                                                                           |                |  |  |  |  |  |
|                    | Var(Y) = 25 + 3 <sup>2</sup> × 9 = 106<br>P(Y > 0) = P $\left(Z > \frac{-5}{\sqrt{106}}\right)$                                                                                  | dM1            |  |  |  |  |  |
|                    | =P(Z>-0.4856)                                                                                                                                                                    |                |  |  |  |  |  |
|                    | =0.686 or 0.6879 (tables) (awrt <b>0.686 ~ 0.688</b> )                                                                                                                           | A1             |  |  |  |  |  |
|                    | ()                                                                                                                                                                               | (6)            |  |  |  |  |  |
|                    |                                                                                                                                                                                  | Total 12       |  |  |  |  |  |
|                    | Notes                                                                                                                                                                            |                |  |  |  |  |  |
| (a)                | 1 <sup>st</sup> B1 for forming a suitable variable $X$ explicitly seen. Do not give for $L$ –                                                                                    | 3S but         |  |  |  |  |  |
|                    | allow $L - (S + S + S)$<br>$2^{\text{nd}}$ B1 for E(X) = 5 (or – 5 if their X is defined the other way around)                                                                   |                |  |  |  |  |  |
|                    | $1^{\text{st}}$ M1 for an attempt at $Var(X) = Var(L) + 3Var(S)$ . Do not condone 5 for "25" or                                                                                  | 3 for "9"      |  |  |  |  |  |
|                    | 1 <sup>st</sup> A1 for 52                                                                                                                                                        |                |  |  |  |  |  |
|                    | 2 <sup>nd</sup> dM1 for attempting the correct probability and standardising with their mean and sd.                                                                             |                |  |  |  |  |  |
|                    | This mark is dependent on $1^{st}$ M1 so if X is not being used or wrong variance score M0                                                                                       |                |  |  |  |  |  |
|                    | If their method is not crystal clear then they must be attempting $P(Z \le -1)$                                                                                                  | ve value)      |  |  |  |  |  |
|                    | or $P(Z > +ve \text{ value})$ i.e. their probability <u>after</u> standardisation should lead to                                                                                 | a prob. < 0.5  |  |  |  |  |  |
|                    | $2^{\text{nd}}$ A1 for awrt 0.244 ~ 0.245                                                                                                                                        | P              |  |  |  |  |  |
|                    | Correct ans. only scores 5/6 (or 6/6 if 1st B1) but must be clearly labelled as (a) or the                                                                                       | first answer.  |  |  |  |  |  |
| <b>(b)</b>         | 1 <sup>st</sup> B1 for defining a new variable $[Y = ] + (L - 3S)$ . May be implied by a corn $2^{\text{nd}}$ B1 for $E(Y) = 5$ (or $-5$ if their Y is defined as $Y = 3S - L$ ) | rect variance. |  |  |  |  |  |
|                    | $1^{\text{st}} \text{ M1}$ for an attempt at $\text{Var}(Y) = \text{Var}(L) + 3^2 \text{Var}(S)$ . Do not condone 5 for "25" of $1^{\text{st}} \text{ A1}$ for 106 only          | or 3 for "9"   |  |  |  |  |  |
|                    | $2^{\text{nd}}$ dM1 for attempting the correct probability and standardising with their m                                                                                        | ean and sd.    |  |  |  |  |  |
|                    | This mark is dependent on $1^{st}$ M1 so if Y is not being used or wrong varian                                                                                                  | ce score M0    |  |  |  |  |  |
|                    | If their method is not crystal clear then they must be attempting $P(Z > -1)$                                                                                                    | ve value)      |  |  |  |  |  |
|                    | Or  D(7 < 1 va valva) is a their probability after standardisation should lead to                                                                                                | o nuch > 0 F   |  |  |  |  |  |
|                    | $P(Z \le +ve \text{ value})$ i.e. their probability <u>after</u> standardisation should lead to $2^{nd}$ A1 for an awrt $0.686 \sim 0.688$                                       | a prob. > 0.5  |  |  |  |  |  |
|                    | Correct answer only scores 6/6 but must be clearly labelled as (b) or the second                                                                                                 | ond answer.    |  |  |  |  |  |
|                    | , ; (x) as as (x) as as (x)                                                                                                                                                      |                |  |  |  |  |  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Marks                  |  |  |  |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|--|--|
| 6 (a               | $H_0: \mu_{new} - \mu_{old} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B1                     |  |  |  |  |  |
|                    | $\mathbf{H}_{1}: \mu_{new} - \mu_{old} > 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |  |  |  |  |  |
|                    | $z = \frac{7 - 5.5 - 1}{\sqrt{\frac{0.5}{60} + \frac{0.75}{70}}} = 3.62254$ (awrt <b>3.62</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |  |  |  |  |  |
|                    | Critical value $z = 1.6449$ (allow $\pm$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B1                     |  |  |  |  |  |
|                    | [3.62 > 1.6449] so sufficient evidence to reject $H_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dM1                    |  |  |  |  |  |
|                    | Evidence that the mean yield of new variety is more than 1 kg greater than the old variety.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A1                     |  |  |  |  |  |
| (lt                | Mean yield is normally distributed Sample size is large. Must state or imply that <b>in this case</b> sample size is large                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (9)<br>B1<br>B1<br>(2) |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total 11               |  |  |  |  |  |
|                    | Notes  1st & 2nd D1 for hypotheses. Accept 4, 4, or 4, 4, ata if there is some indices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tion of                |  |  |  |  |  |
| (a                 | 1st & 2 <sup>nd</sup> B1 for hypotheses. Accept $\mu_1, \mu_2$ or $\mu_A, \mu_B$ etc if there is some indica which is which e.g. $A \sim N(\mu_A, 0.5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tion of                |  |  |  |  |  |
|                    | $1^{st}  M1  \text{for an attempt at se. Condone switching 0.5 and 0.75}  \sqrt{\frac{0.5 \text{ or } 0.75}{60} + \frac{0.75 \text{ or } 0.5}{70}}$ $1^{st}  A1  \text{for a correct expression for denominator of test statistic or 0.138 or } \sqrt{0.0190}$ $2^{nd}  A1  \text{for a correct numerator of test statistic (must have the } -1)$ $3^{rd}  A1  \text{for awrt 3.62}$ $[Allow - 3.62 \text{ from numerator of } 5.5 - 71 \text{ and compatible H}_1]$ $3^{rd}  B1  \text{for } \pm 1.6449 \text{ seen } \underline{\text{or}}$ $\text{probability of } 0.0002 \text{ (tables) or } 0.000145\text{(calc) [allow } 0.0001]$ $2^{nd}  dM1  \text{dep. on } 1^{st}  M1 \text{ for a correct statement based on their normal cv and their test statistic}$ $2^{nd}  A1  \text{for correct comment in context. Must mention "yield" } \underline{\text{and}} \text{ "varieties" or "old"}$ $\text{and "new" } \underline{\text{and}} \text{ "1"}$ $\text{If second B mark is B0 award A0 here}$ |                        |  |  |  |  |  |
| AL'                | <b>Pooled estimate:</b> If they calculate $s_p = \sqrt{0.41845} = 0.64688$ allow 1 <sup>st</sup> M1, 1 <sup>st</sup> A1 for expression (or awrt 0.114) and 2 <sup>nd</sup> A1 if numerator correct but A0 for test statistic (4.39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |  |  |  |  |  |
| (lt                | 1 <sup>st</sup> B1 for mention of <u>mean</u> (yield) and <u>normal</u> (distribution) 2 <sup>nd</sup> B1 for mention of <u>sample</u> (size) being <u>large</u> in <u>this case</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |  |  |  |  |  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                        | Marks        |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 7 (a)              | $\hat{\mu} = \bar{x} = \frac{33.29}{8} = 4.16125$ (awrt <b>4.16</b> )                                                                                                                                                                                                                                                                                                                                                                         | B1           |
|                    | $\hat{\mu} = \bar{x} = \frac{33.29}{8} = 4.16125$ (awrt <b>4.16</b> ) $\hat{\sigma}^2 = s^2 = \frac{4.12^2 + 5.12^2 + \dots - 8 \times \bar{x}^2}{7}$ $\hat{\sigma}^2 = s^2 = \frac{141.4035 - 138.528013}{7} = 0.41078$ (awrt <b>0.411</b> )                                                                                                                                                                                                 | M1           |
|                    | $\hat{\sigma}^2 = s^2 = \frac{141.4035 - 138.528013}{7} = 0.41078 $ (awrt <b>0.411</b> )                                                                                                                                                                                                                                                                                                                                                      | A1           |
| (b)                |                                                                                                                                                                                                                                                                                                                                                                                                                                               | B1 (3)       |
|                    | $\sum x^2 = "141.4035" + 31 \times 0.25 + 32 \times 4.55^2 (= 811.6335) $ (awrt <b>812</b> )                                                                                                                                                                                                                                                                                                                                                  | M1A1         |
|                    | Combined sample: $s^2 = \frac{811.6335 - \frac{178.89^2}{40}}{39} = 0.29724865$ (awrt <b>0.297</b> )                                                                                                                                                                                                                                                                                                                                          | M1A1         |
|                    | $\frac{s}{\sqrt{n}} = \frac{\sqrt{0.297}}{\sqrt{40}} = 0.0862$ (awrt <b>0.0862</b> )                                                                                                                                                                                                                                                                                                                                                          | M1A1         |
| (c)                | $\overline{x} \pm 1.96 \frac{\sigma}{\sqrt{n}} = \frac{178.89}{40} \pm 1.96 \frac{0.67}{\sqrt{40}}$                                                                                                                                                                                                                                                                                                                                           | (7)<br>M1B1  |
|                    | = (4.2646, 4.67988) awrt ( <b>4.26</b> [or 4.265], <b>4.68</b> )                                                                                                                                                                                                                                                                                                                                                                              | A1 (3)       |
|                    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total 13     |
| (a)                | M1 for an attempt at $s^2$ : correct denom, clear attempt at $\sum x^2$ and ft their $\overline{x}$                                                                                                                                                                                                                                                                                                                                           | Ans only 2/2 |
| (b)                | B1 for correct sum or mean or fully correct expression (accept mean = awrt 4.47) $\mathbf{M}$ 1 <sup>st</sup> M1 for their 141.4035 + 31×0.25 + 32×4.55 <sup>2</sup> or "141.4035" + 7.75+ 662.48 (ac <b>Beware:</b> $32(0.25 + 4.55^2)$ + "141.4035" = awrt 812 but scores M0A0. 1 <sup>st</sup> A1 for a fully correct expression (all to 3sf or better) or answer only = aw 2 <sup>nd</sup> M1 for a correct expression using their values | ecept 3sf)   |
|                    | $3^{\text{rd}}$ M1 dependent on using a changed $s^2$ (not their 0.411 or 0.25) for $\frac{\sqrt{0.2}}{\sqrt{4}}$                                                                                                                                                                                                                                                                                                                             | 97"<br>0     |
|                    | This $s^2$ must be based on a <u>combination</u> of their 0.411 and 0.25 e.g. 0                                                                                                                                                                                                                                                                                                                                                               | .661         |
| (c)                | M1 for $\overline{x} \pm z \times \frac{\sigma}{\sqrt{n}}$ for any $z$ ( > 1.5) and ft their $\overline{x}$ based on combining their 4                                                                                                                                                                                                                                                                                                        |              |
|                    | do not award for simply using 4.55 or their 4.16. Condone $\sigma = \sqrt{\text{their } 0.297}$                                                                                                                                                                                                                                                                                                                                               | or their (b) |
|                    | B1 for $z = 1.96$ used in an attempt at a CI, may for example miss $\sqrt{n}$ A1 for both limits awrt 3sf. Allow lower limit of 4.265                                                                                                                                                                                                                                                                                                         |              |

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467
Fax 01623 450481
Email <u>publication.orders@edexcel.com</u>
Order Code UA037011 Summer 2013

For more information on Edexcel qualifications, please visit our website  $\underline{www.edexcel.com}$ 

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE





